Chung’s research has focused on developing new techniques to produce comprehensive, high-resolution maps of complex organs such as the brain. In his project abstract, Chung proposes “a holistic approach for studying organ-wide functional networks at multiple scales through the development of pioneering technologies that enable proteomic reconstruction of organs at unprecedented resolution.” Current biological methodology requires dividing biological systems into “known cell types and then separately studying each population,” which Chung says can ignore important but unidentified functional networks. With the award, Chung plans to develop technologies that can enable more holistic understanding of these complex biological systems.
The 2016 NIH High-Risk, High-Reward (HRHR) research awards — of which the New Innovator Awards are a subcategory — were given to 88 highly creative and exceptional scientists with bold approaches to major challenges in biomedical research. The awards span the broad mission of the NIH and include groundbreaking research, such as engineering immune cells producing drugs at the site of diseased tissue; developing a sensor to rapidly detect antibiotic resistance of a bacterial infection; understanding how certain parasites evade host detection by continually changing their surface proteins; and developing implants that run off the electricity generated from the motion of a beating the heart.